EE306 - The three phase synchronous motor.


Please Do Not Use This Reference Material WORD FOR WORD View Terms Of usage policy Page of this site for more Info on how to use this site

Title: The three phase synchronous motor.

Aim: To investigate the principal operating characteristics of a three phase synchronous motor.

Apparatus: See your laboratory manual for the apparatus.

Please Do Not Use This Reference Material WORD FOR WORD View Terms Of usage policy Page of this site for more Info on how to use this site

THEORY:
A synchronous electric motor is an AC motor in which, at steady state,[1] the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integral number of AC cycles. Synchronous motors contain multiphase AC electromagnets on the stator of the motor that create a magnetic field which rotates in time with the oscillations of the line current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field of any AC motor. A synchronous motor is only considered doubly-fed if is supplied with independently excited multiphase AC electromagnets on both the rotor and stator.
The synchronous motor and induction motor are the most widely used types of AC motor. The difference between the two types is that the synchronous motor rotates in exact synchronism with the line frequency. The synchronous motor does not rely on current induction to produce the rotor's magnetic field. By contrast, the induction motor requires "slip", the rotor must rotate slightly slower than the AC current alternations, to induce current in the rotor winding. Small synchronous motors are used in timing applications such as in synchronous clocks, timers in appliances, tape recorders and precision servomechanisms in which the motor must operate at a precise speed; speed accuracy is that of the power line frequency, which is carefully controlled in large interconnected grid systems.
Synchronous motors are available in sub-fractional self-excited sizes[2] to high-horsepower industrial sizes.[1] In the fractional horsepower range, most synchronous motors are used where precise constant speed is required. These machines are commonly used in analog electric clocks, timers and other devices where correct time is required. In high-horsepower industrial sizes, the synchronous motor provides two important functions. First, it is a highly efficient means of converting AC energy to work. Second, it can operate at leading or unity power factor and thereby provide power-factor correction.

  Theory of operation
When the motor is supplied with a.c. power supply, the stator poles get energised. This in turn attracts (opposite) the rotor poles, thus both the stator and rotor poles get magnetically interlocked. It is this interlock which makes the rotor to rotate at the same synchronous speed with the stator poles. The synchronous speed of rotation is given by the expression Ns=120f/P.
When the load on the motor is increased gradually, the rotor even though runs at same speed, tends to progressively fall back in phase by some angle, “β”, called the Load Angle or the Coupling Angle. This Load angle is dependent on the amount of load that the motor is designed to handle. In other words, we can interpret as the torque developed by the motor depends on the load angle, “β”.
Mechanical shaft--power transmissionThe electrical working of a Synchronous Motor can be compared to the transmission of power by a mechanical shaft. In the figure are shown two pulleys, “A” & “B”. Pulley “A” and the pulley “B” are assumed to be keyed on the same shaft. Pulley “A” transfers the power from the drive through the shaft, in turn making the pulley “B” to rotate, thus transferring power to the load.
Coupling Angle or Load Angle
The two pulleys which are keyed to the same shaft can be compared to the interlock between the stator & rotor poles.
If the load increases, the pulley “B” transfers the increase in load to the shaft, which is exhibited by the twisting of the shaft.
Thus the twist of the shaft can be compared to the rotor falling back in phase with the stator.
The twist angle can be compared to the load angle “β”. Also when the load increases, the twisting force and the twist angle increases, thus the load angle “β” also increases.
If the load on the pulley “B” is increased to such an extent that it makes the shaft to twist and break, then the transmission of power through the shaft stops as the shaft is broken. This can be compared with the rotor going out of synchronism with the stator poles.
Thus Synchronous motors can run either at synchronous speed or they stop running.
  Know how a synchronous motors differ from the conventional Induction motors. Also know where are the Synchronous motors are widely used and its Applications.
  Starting procedure
All the Synchronous Motors are equipped with “Squirrel Cage winding”, consisting of Cu (copper) bars, short-circuited at both ends. These windings also serve the purpose of self-starting of the Synchronous motor. During starting, it readily starts and acts as induction motors. For starting a Synchronous motor, the line voltage is applied to the stator terminals with the field terminals (rotor) left unexcited. It starts as an induction motor, and when it reaches a speed of about 95% of its synchronous speed, a weak d.c excitation is given to the rotor, thus making the rotor to align in synchronism with the stator.( at this moment the stator & rotor poles get interlocked with each other & hence pull the motor into synchronism.
  Hunting/Surging/Phase Swinging
Hunting or Surging or Phase swinging of a synchronous motor is caused by either
1.      Varying load.
2.      Pulsating supply frequency.
When a Synchronous motor is loaded (such as compressors, pumps, shears etc), as the load increases, its rotor falls back by a coupling angle “β”. As the load is increased further, this angle “β” further increases to cope up with the increased load. At this situation, if the load suddenly decreases, the rotor overshoots and then it’s pulled back to suite the new load on the motor. In this way, the rotor starts oscillating like a pendulum, about its new position corresponding to its new load, trying to regain equilibrium. If the time period of these oscillations happen to coincide with the natural frequency of the machine, then a resonance is set-up, thus may throw the machine out of synchronism. To dampen such oscillations, “damper” or “damping grids” known as “squirrel-cage windings” are employed.

  Applications of Synchronous Motors:
·         These motors are used as prime movers (drives) for centrifugal pumps, belt-driven reciprocating compressors, Air Blowers, Paper Mills, rubber factories etc, because of their high efficiency & high speeds (r.p.m above 600).
·         Low speed Synchronous motors (r.p.m below 600), are widely used for driving many positive displacement pumps like screw & gear pumps, vacuum pumps, chippers, metal rolling mills, aluminum foil rolling machines etc.
·         These motors are also widely used onboard ships. The ship’s navigational equipment like Gyro-compass use a special type of synchronous motor. They are also used as prime movers for Visco-Therm or Viscometer, a device for measuring/regulating the viscosity of the main propulsion engine’s fuel oil.
·         Most of the factories & industries use infinite number of inductive loads. These may range from the tube lights to high power induction motors. Thus these inductive loads have a drastic lagging power factor. An Over-excited Synchronous motor ( a Synchronous Capacitor), having a leading power factor, is used to improve the power factor of these supply systems.
·         These Motors are also used for Voltage-regulation, where a heavy voltage dip/rise occurs when a heavy inductive load in put on/off at the end of the long transmission lines.
·         Synchronous motors can be run at ultra-low speeds by using high power electronic converters which generate very low frequencies. Examples of these motors are a 10 MW range used for driving crushers, rotary kilns & variable speed ball mills.



For Procedure and Circuit Diagram, See your Electrical Laboratory Manual on page 3. 

 Fill Up Tables in Your Manual and Continue To….

PRECAUTIONS:
For Precautions, See General Electrical Lab Precautions

Answers to Questions:
No Questions in this experiment.

Please Do Not Use This Reference Material WORD FOR WORD View Terms Of usage policy Page of this site for more Info on how to use this site


Share on Google Plus

About Stephen Djes

Stephen Djes is a passionate Graduate of Engineering from the University of Benin, and he is geared towards helping fellow engineering students in the great institution of UNIBEN to do better at academics.
    Blogger Comment
    Facebook Comment